
CHAPTER 11

Saturated models and small theories

In the previous chapter we have defined the notion of a κ-saturated model, and we have
seen that κ-saturated models have size at least κ, and that every consistent theory has κ-
saturated models for each κ. A model M which is κ-saturated and has size κ is often simply
called saturated. Now it is not true that every consistent theory has saturated models of every
possible size κ.

For example, take a language L consisting of a countable number of unary predicates
P0, P1, P2, . . ., and consider the following L-structure M : its elements are the finite subsets of
the natural numbers and for such an m ∈ M we will say that it has the property Pn precisely
when n ∈ m. Let T = Th(M) (note that T is a nice theory). For each function f :N → {0, 1}
we have a partial type

pf = {Pi(x) : f(i) = 1} ∪ {¬Pi(x) : f(i) = 0}.

These are finitely satisfiable in M , so consistent with T , meaning that an ω-saturated model
would have to realize all pf . But an element realizing pf cannot also realize pg when g 6= f ,
hence an ω-saturated model of T would have to have size at least that of the continuum. In
particular, T does not have countable saturated models. (A fancier version of this example
would take the theory T = Th(N,+, ·, 0, 1) and consider partial types pf containing formulas
saying that x is divisible by the nth prime number if f(n) = 1, and not divisible by that prime
number if f(n) = 0.)

In this chapter we will look at saturated models and isolate a necessary and sufficient
condition for nice theories to have a countable saturated model. We will also show that if a
nice theory has a countable saturated model, it must also have a prime model.

1. Saturated models

Definition 11.1. An infinite model M is called saturated if it is |M |-saturated.

Theorem 11.2. Suppose A and B are two saturated models having the same cardinality.
If A and B are elementarily equivalent, then they are isomorphic.

Proof. Suppose |A| = |B| = κ and A = (aα)α∈κ and B = (bα)α∈κ are enumerations
of A and B respectively. Assume also that A ≡ B. We will use back and forth to show
A ∼= B: indeed, we will create by transfinite recursion an increasing sequence of elementary
maps fα:X ⊆ A→ B with |X| < κ, such that for any limit ordinal λ < κ and natural number
n we have aλ+n ∈ dom(fλ+2n+2) and bλ+n ∈ ran(fλ+2n+1). Then f =

⋃
α∈κ fα is the desired

isomorphism.

Recall that Lemma 10.6 told us that for any m ∈M and any elementary map f :X ⊆M →
N , where |X| < κ and N is κ-saturated, there is an elementary map g:X ∪ {m} ⊆ M → N
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extending f . So we can create the increasing sequence of elementary maps by starting with
f0 = ∅, applying this lemma at the successor stages and taking unions at limit stages. �

Corollary 11.3. For a nice theory T the following are equivalent:

(1) T is ω-categorical;
(2) all models of T are atomic;
(3) all models of T are ω-saturated;
(4) all countable models of T are saturated.

Proof. (1) ⇒ (2) was Theorem 9.11.

(2) ⇒ (3) follows from the fact that atomic models are ω-saturated. For let a be a finite
tuple of parameters from an atomic model A and p(x) be a 1-type which is finitely satisfiable in
(A, a). Since (A, a) is atomic as well (see Proposition 9.2), the type p is isolated; and because
p is realized and finitely satisfiable in (A, a), it will be realized in (A, a).

(3) ⇒ (4) is obvious, while (4) ⇒ (1) follows from the previous theorem. �

2. Small theories

In this section we will characterise those nice theories which have countable saturated
models. We will also show that nice theories which have countable saturated models have
prime models as well.

Intuitively, a countable ω-saturated model has to harmonize two antagonistic tendencies:
on the one hand such models are rich, because ω-saturated; on the other hand, they are small,
because only countable. You may suspect that theories can only have such models if their type
spaces are not too big, and you would be right.

Definition 11.4. A theory T is small if all its type spaces are countable.

Theorem 11.5. A nice theory T has a countable ω-saturated model if and only if it is
small.

Proof. If T is complete and has an ω-saturated model M , then every n-type is realized
in M . So if M is countable, there can be at most countably many n-types for any n.

For the other direction, we take a closer look at the proof of Theorem 10.4 and assume that
A is a model of small theory T . First of all, we may assume that A is countable (by downward
Löwenheim-Skolem). In that case how many 1-types p(a, x) are there where a is a finite set of
parameters from A? The answer is that there at most countably many, because the collection
of finite sequences with parameters from A is countable and there are countably many types
of the form p(y, x). This means that the model B in the proof of Lemma 10.5 may be taken
to be countable as well. And that in turn means that in the proof of Theorem 10.4 we have to
consider a countable chain of countable models: but then its colimit, which was an ω-saturated
model, is countable as well. �

To prove that nice and small theories have prime models, we need to understand these
small theories a bit better.

Definition 11.6. Let {0, 1}∗ be the set of finite sequences consisting of zeros and ones. A
binary tree of formulas in variables x = x1, . . . , xn over T is a collection {ϕs(x) : s ∈ {0, 1}∗}
such that T |=

(
ϕs0(x) ∨ ϕs1(x))→ ϕs(x)

)
and T |= ¬

(
ϕs0(x) ∧ ϕs1(x)

)
.
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Theorem 11.7. The following are equivalent for a nice theory T :

(1) |Sn(T )| < 2ω.
(2) There is no binary tree of consistent formulas in x1, . . . , xn over T .
(3) |Sn(T )| ≤ ω.

Proof. (1) ⇒ (2): We show that the existence of a binary tree of consistent formulas
implies that the type space has size at least that of the continuum. If {ϕs(x) : s ∈ {0, 1}∗} is a
binary tree of consistent formulas, then

pα = {ϕs : s ⊆ α}

is a consistent partial type for every α:N → {0, 1}. Since consistent partial types can be
extended to complete types and nothing can realize both pα and pβ when α and β are distinct,
we see that the existence of a binary tree of consistent formulas implies that there are at least
2ω many types.

(2)⇒ (3): We show that the uncountability of Sn(T ) implies that there must exist a binary
tree of consistent formulas. If |Sn(T )| > ω, then we have |[ϕ]| > ω for any tautology ϕ. So
we can construct a binary tree of consistent formulas by repeated application of the following
claim.

Claim: If |[ϕ]| > ω, then there is a formula ψ(x) such that |[ϕ∧ψ]| > ω and |[ϕ∧¬ψ]| > ω.
Proof: Suppose not. Define

p(x): = {ψ(x) : |[ϕ ∧ ψ]| > ω}.
By assumption this collection contains a formula ψ(x) or its negation, but not both. In addition,
if p contains both ψ0 ∨ ψ1, then

|[ϕ ∧ (ψ0 ∨ ψ1)]| = |[ϕ ∧ ψ0] ∪ [ϕ ∧ ψ1]| > ω,

so p will contain either ψ0 or ψ1. This implies that if p contains ψ1, . . . , ψn then it also contains
ψ1 ∧ . . . ∧ ψn: for if ψ1 ∧ . . . ∧ ψn 6∈ p, then ¬(ψ1 ∧ . . . ∧ ψn) ∈ p, hence ¬ψi ∈ p for some i.
Since each ψ ∈ p is consistent, this implies that each finite subset of p is consistent; hence p is
consistent and therefore a complete type.

But now we arrive at a contradiction, as follows: if ψ 6∈ p, then |[ϕ∧ψ]| ≤ ω, by definition.
In addition, the language is countable, so

[ϕ] =
⋃
ψ 6∈p

[ϕ ∧ ψ] ∪ {p}

is a countable union of countable sets and hence countable, contradicting our assumption for
ϕ.

(3) ⇒ (1): This is clear, because ω < 2ω. �

Corollary 11.8. If T is nice and small, then isolated types are dense. So T has a prime
model.

Proof. If isolated types are not dense, then there is a consistent ϕ(x) which is not a
consequence of a complete formula. Call such a formula perfect. We claim that perfect formulas
can be “decomposed” into two consistent formulas which are jointly inconsistent. Repeated
application of this claim leads to a binary tree of consistent formulas, so T cannot be small, by
the previous theorem.
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To see that any perfect formula ϕ can be decomposed into two perfect formulas, note that
perfect formulas cannot be complete, so there is a formula ψ such that both ϕ∧ ψ and ϕ∧¬ψ
are consistent. But as these formulas imply ϕ and ϕ is not a consequence of a complete formula,
these formulas have to be perfect as well. �

3. Exercises

Exercise 1. An infinite model M is called strongly κ-homogeneous if every elementary
map f :X ⊆M →M with |X| < κ can be extended to an automorphism of M .

(a) Show that a κ-homogeneous model of cardinality κ is strongly κ-homogeneous
(b) Show that a saturated model of cardinality κ is strongly κ-homogeneous
(c) Show that prime models of nice models are strongly ω-homogeneous.
(d) Give an example of a model which is ω-saturated but not strongly ω-homogeneous.

Exercise 2. Suppose U is an non-principal ultrafilter on N. Let (Mi)i∈N be a sequence of
L-structures, and let ∗M =

∏
Mi/U .

Let A ⊆ ∗M be arbitrary, and choose for each a ∈ A an fa ∈
∏
Mi such that a = [fa].

Let p(x) = {ϕi(x) : i < ω} be a set of LA-formulas such that p(x) is finitely satisfiable in ∗M .
By taking conjunctions, we may, withour loss of generality, assume that ϕi+1(x) → ϕi(x) for
i < ω. Let ϕi(x) be θi(x, ai,1, . . . , ai,mi

), where θi is an L-formula.

(a) Let
Di = {n < ω : Mn |= ∃x θi(x, fai,1(n), . . . , fai,mi

(n)) }.
Show that Di ∈ U .

(b) Find g ∈
∏
Mi such that if i ≤ n and n ∈ Di, then

Mn |= θi(g(n), fai,1(n), . . . , fai,mi
(n)).

(c) Show that g realizes p(x). Where do you use the fact that U is non-principal?
(d) Assume that L is countable. Conclude that ∗M is ℵ1-saturated.
(e) Show that if the Continuum Hypothesis holds then every nice theory has a saturated

model with size ℵ1.

Exercise 3. Let T be a theory in a countable language without a binary tree of consistent
formulas. Show that T is small.


